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SUMMARY

A theoretical investigation is presented of the time-temperature-
dependent buckling of a pin-jointed constant-section columm, whose initial
curvature is defined by a half-sine wave when the material is linearly
viscoelastic and is heated uniformly elong the column at a prescribed time
rate. It was .found that the deviations from straightness increase with
time and become indefinitely large when heating reduces the Young's modu-
lus of the material to the value at which the applied load is the Euler
load of the column. When the column is heated very rapidly this critical
time represents the limit of usefulness of the columm. When heating takes
place less rapidly the deflections of the column ceuse bending stresses
exceeding the yield stress of the material &t a time consideraebly smaller
than the critical time. The equations presented permit the calculation
of this reduction in the useful lifetime of the column.

INTRODUCTION

Analytical investigations and experiments have shown that a visco-
-elastic column at constant temperature subjected to a constant end load
less than the Euler load will buckle if the load is maintained for a
sufficiently long period of time. If the temperature is increased the
time required for buckling decreases (refs. 1 to 3)}). This type of response
of a structure to a sustained constant load is an example of the effect
of creep, which is one of the factors responsible for the inelastic

behavior of a column.

Creep buckling has been investigated recently in some detail by
Kempner (refs. 4 and 5). In reference 4 the column was assumed to possess
ideal linear viscosity of the Newtonian type. It was found that initial
slight deviations of the center line oft the column from the straight line
increased continuously with time and became indefinitely large if the load
and the temperature were maintained constant for an indefinitely long time.
The msthematical concept of indefinitely large displacements is equivalent
to the practical concept of buckling. However, & column becomes useless
for practical purposes st an earlier time, nemely when it becomes curved
to such a degree that it cannot fulfill any more its structural purposes
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or when the bending stresses caused by large deviations from straightness
cannot be supported by the material of the column. The situstion is
different when the material exhibits nonlinear viscosity. In that case,
investigated by Kempner in reference 5, indefinitely large deformaetions
are reached according to the equations derived in a finite rather than
in an indefinitely large value of time. Nonlinearly viscoelastic columns
buckle, therefore, with a snap action.

In 811 the work cited the column was assumed to be subjected to a R
constant load while the temperature was meintained at a constent level.
In reality the temperature of the structure of a supersonic plane or
gulded missile is increased. from the temperature prevalling at the air-
port or in thé bhangar to some elevated temperature corresponding to
thermal equilibrium at full supersonlc speed while the plane or missile
is under the action of the loads existing in flight. It is of interest,
therefore, to examine the problem of the buckling of a columm subjected
to a given constant load while its temperature is ralsed from anbient
temperature on the ground to the thermal equilibrium temperature in super-
sonic flight. In the present report such an investigation 1s carried out
with the assumption thaet heating tekes place at a prescribed rate.

The inelastic behavior of a material was analyzed by the theory of
mechanical models whereby the constituent phases of the material were
replaced by mechanical models (ref. 6). The mechanical models are combi-
nations of two model elements representing the two basic types of defor-

mation:

(1} A perfectly elastic spring, which obeys Hooke's law, for elastic
deformation.

(2) A dashpot, consisting of a perforated piston moving in a cylinder
conbaining a viscous liquid, for viscous defoimation.

The spring element is a model of & linearly elastic body while, if the liquid
in the cylinder obeys Newton's law of viscosity, the dashpot is an example
of a linearly viscous body. These basic elements .may be couplea in series
or parallel. When combined in series, a linear Mexwell model results and
represents the model considered in thls report to explaln the inelastic
behavior of the material.

The total strain of a Maxwell model under a uniaxial force consists
of an elastic component (which contains Young's modulus) and a creep
component (which contains a viscosity coefficient). In this report,
Young's modulus and the viscosity coefficient are considered to be func-

tions of temperature, while the temperature is a function of time. Inertia  _ _ __.

effects are neglected, since it is shown in reference T that there is good
agreement between results of the dynamic and static approach for linearly
viscoelastic columns.
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Based on the assumption that during bending any transverse section,
originally plane, remaing plane and normal to the longitudinal fibers of
the beam, the well-known fundamental relation between radius of curvature
and strain is obtasined. Assuming small deflections, the latter egquation
when differentiated with respect to time results in a third-order, linear
partial differential equation. The assumption of a product solution in
the independent varisbles reduces this equation to a first-order equation
whose variables are separable.

The deflection of the column is expressed in terms of & simple,
definite time integral contalning Young'’s modulus and the viscosity coef-
ficient. A solution is presented for a general linear variation of Young's
modulus and viscosity coefficient with temperature and of tempersture
with time. '

The author wishes to express his gratitude to Professor Joseph
Kempner for his advice and to Professor N. J. Hoff, the supervisor of
the project, for suggesting the problem.

This work was conducted at the Polytechnic Institute of Brooklyn
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOIS

A cross-sectional area of column

ai,bq constants; coefficients in sssumed linear Young's modulus -
tempersture relation

a2,b2 constants; coefficients in assumed linear viscosity-coefficient -
temperature relstion

a3,b3 constants; coefficients in assumed linear temperasture-time
relation

c constent, EOP/PE0

E Young's modulus

By activation energy

F definéd by equation (12)
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- maximumm deflection of unloaded column

moment of inertias with respect to neutral axis
constant defined by equation (19)

length of column

moment of external forces

constant, compressive end load

temperature (time) dependent Euler load, =°E(t)I/I2
universal gas constant

temperature

temperature, deg abs

time

additional deflection from initially curved, unloaded column

initial deviation from straightness

elastic deflection resulting from instantaneous epplication of
end load P

exial coordinate of column

normal distance from neutral surface
constant, ag/bg

constant, (a1 - C)/by

total axial strain

creep component of axial strain
elastic component of axial strain
viscosity coefficient

radius of curvature

stress
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& defined by equation (13)
¥ function of temperature
Subscript:

o conditions at zero time

GENERAL ANALYSIS

The fundamental bending relation between the totel strain € and
the radius of curvature p, which is based on the assumption that any
transverse section, originally plane, remains plane and normal to the
longitudinal fibers of the beam after bending, is

1/p = €/z (1)

where =z is the normal distance from the neutral surface.

The inelastic behavior of the column is expressed in terms of a
linear Maxwell unit, that is, a series combination of a spring element
obeying Hooke's law for linear elasticity and & dashpot whose fluid obeys
Newton's law of viscosity for linear viscosity. The total strain of the
Maxwell unit under a uniaxial force consists of the elastic component
¢e and the creep component 6. (ref. 6), or

t
€= 6 + 6 = (0/E) +f (a/\) dt (2)
0

where Young's modulus E and the viscosity coefficient X are both
functions of temperature, while the temperature is a function of time +.

The substitution of equation (2) into equation (1) and multiplicetion
by z° yield
t
ze/p = (oz/E) + z (c/A) dt
0

Therefore

zed(l/p)/dt = (oz/BE) - (ﬁcz/Ee) + (oz/A)

where d/dat = ('). Integration of each term over the cross-sectional
area A results in

%(1/‘0){ 22 gA = (l/E)‘[; oz ar - (E/f)l oz dA + (1/x)£ oz dA

(3)
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As the moment M of the external forces is expressed by

M=J¥ZM

A

ﬂ:f&ZdA
A

Hence equation (3) reduces to

it follows that

EI a(1/p)/at = M + [(E/A) - (B/E)]M (L)

where I is the moment of inertis with respect to the neutral sxis.

For small deflections

i/p = -daw/dx2 (5)

where 'w 1s the additional deflection from the initiaelly curved, unloaded
column and x is the axial coordinate (fig. 1). The initiel displace-
ment wy; of the pin-jointed, unloaded bar is assumed to be

wy = Fy sin {nx/L) ' (6)

while the elastic deflection w, resulting from the instantaneous appli-

cation of the constant, compressive end load P is obtained from the
solution of

BT d%w,/dx® = -M_ = -P(w, + wy) (7)
The solution of equation (T) is
P/P.
B
Fy ___;Z:_Ji___
- (3/PE0)

where the subscript o refers to conditions at t

Wo=

sin (mx/L) (8)

=0, and Py = ©E,I/1?
(o}

creep phenomenon must
section is

is the corresponding Euler load. When + > 0, the
be considered; then the external moment M at any

M = P(wy + W) (9)
80 that

M = Pw

(10)



NACA TN 3139 . T

The substitution of equatioms (5), (9), and (10) into equation (4)
and the rearrangement of terms result in the following third-order,
linear partial differéntial equation:

S . . .
BT St + P+ P[(E/A) - (8/B)]w = -P[(B/A) - (B/B)]wy

Equation (11) must satisfy the conditions: (11)
t =0, w=wo
Xx=0,L w=0
As a solution, assume
w = F(t) sin (nx/L) (12)

which, when introduced into equation (11), together with equation (6),
gives

-EIF(x/L)2 + PF + P[(E/A) - (B/B)]F = -P[(E/2) - (&/E)]F,
Tet
Pg = Pg(t) = n°E(t)I1/1°
o = o(t) = [(B/A) - (/)] /(= - ¢) (13)

where C = Eog/BEo is a constant; therefore the last eguation becomes

F - COF = CoFy
Hence
aF/(F + Fy) = C¢ dat
whose solution is

t
9/p ¢ dt
0]

F=(Fy + Fi)e - Fy
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From equations (8) and (12), when t =0

W = Wq

P/PE
(o]

= Fy Efi-(%755;§ sin (mx/L)

F, sin (mx/L)

therefore
P/PE
o)
Fo = Fs 1‘:—(3755-3 = F1C/(Eo - C)
o
and
~ & N
Cc ¢ at
F = Fa[Eo (B, - )] e 0 -1+ (14)

This expression 1s further simpliified by the evaluation of the
integral )

t t d
_ (E/x) - (B/E)
JQ o dt ‘jg dt

(E -¢)

% E |
= —E - -
j; TE5) dt L/;:o[dE/E(E )]

4 E
_ fo —F g - (1/0) /;:o{[l/(E - ¢y - (1/E)} dE

ME - C)

+ )
- — Bt - - -
_fo YRy at - (1/c) loge [(E - C)E,/(E, - C)E]
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Therefore

Cf odt f x(E ooyt 1oge [(B-C)Eo/(Eo-C)E]

e

t
E
Cfo B
= [B(B, - C)/Eo(E - C)] e
Equation (14) becomes
t
E_,
Cfo A(E-C) i
F=F 5 -1
| 1-(c/5)
But C/E = EOP/PEOE =.P/Pg; hence
f x(E c)
F = -1 (15)
1 - (B/Pg)
and from equation (12)
rt
E
C/; MELC) T
v =F|E - 1/ sin (ng/L) (16)

1- (P/PE)

Equation (16) expresses the additional deflection w in terms of a
simple, definite time integral containing Young's modulus E(t) and the
viscosity coefficient AMt). It will be noted that the deflected column
retains its sine-curve characteristic and that the additional deflection
tends to infinity in a finite time when the temperature (time) dependent
Euler load Pg(t) approaches the applied, constant end load P.

Although the equation Indicates that the infinite deflection is inde-
pendent of the viscosity coefficient, the time-dependent viscosity coef-
ficient does, for practical purposes, influence the buckling failure if
buckling failure is defined by some finite ratio of additional deflection

to initial deflection.
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APPLICATION OF GENERAL DISPLACEMENT EQUATION

Equation (16) is solved for the following assumed general linear
relations between Young's modulus and temperesture, viscosity coefficient
and tempersture, and temperature snd time:

L=a2+b2T
= + b.t
T=85+0b

1

t % %
fo ﬁ_hj_c-)' at = Cfo [at/ME - ©)] +fo (at/x)

(C/b1b2b3)f [ar/(T + a)(T + B)] +
To

(1/1321)3).‘/5;m [ar/(T + )]
o
where o = E‘E/bE end B =-(al - C)/%l. But
T T T
fTo [d‘l‘/(T + a)(P + B)] = -[1/((!. - B)]“/;o [dT/(T + oc)] + [1/(a, - B)]f'ro [d:r/(T + s)]

= _':[1/(m - a)] loge (T + a.)]z ﬂ:l/(m - s)] loge (T + ﬁ)]T

+
o To

(T + B)(Tq + a)
=11 - 1
[1/(a - 8)] 1oge (T + BT + o)

1
(To + a)(T + B)]*-P
= 1oge
(T + a)(Ty + B)_I
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and

K [dT/(T + a.)] = loge [(T + a)/(T, + cc,)]

therefore

A

Iet

. l:(TO . Q)T + B)‘Iblbab3(o:.-ﬁ) ( - mf;;g

o

1
(T + a)(T + )| *P

dt = (C/blb2b3) log, [

(1/vb3) 1oge [(T

(T + a)(Tg + B)_l

+ a)/(T, + o]

- log, [(TO + a)(T
(T + «)(Ty

(T + a)(Ty + B)_l

C
+ B) ( T + o
+ B) To + @

c 1

To + o

1

11
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Then

Cfb——-Fi—dt
o ME-C) ~ G loge ¥

- ologe ¥°

¢
=V

¢ c
bybsby(a~B) bb.

_ (Ty + a)(T + B) 17273 (T+G)b2b3

(T + @)(Tq + B) T, + a

¢ __c o2

Ty + m)b1b2b3(°"'5) %203 1 g 4 p\PrPeb3(o-B) (1)
- S 1

( T + o (To + B) !

Reference 8 presents an empirical gquadratic formula for Young's
modulus variation with temperature for T5S-T6 aluminum. The guadratic
formila is assumed to be approximsted by the following linear relation:

£ = (10.5 x 106) - (7.5 x 103 1) (18)
where T .1is in degrees Fashrenheit.

In general, the viscosity-coefficient variation with temperature
(ref. 9) is expected to be of the form

l&L
» = kefla (19)

where

Ea activation energy

R universal gas constant®

Tq . temperature, deg gbs

K constant
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The approximaetion of a linear relation to an exponential curve is
valid only for a narrow range of the temperatures. Based on the experi-
mental curves of figure.3 in reference 2 and the use of equations (2)
and (19), the following relation between viscosity coefficient and
temperature is assumed:

r = (6x203) - (1.5 x 1010 1) (20)

It is assumed that at zero time the temperature of the column is
75° F and that its temperature rises to LOO® F within 60 seconds. There-
fore the temperasture-time equation is

T =75 + 5.42% (21)
where t 1is the time in seconds.

A comparison of equations (18), (20), and (21) with the general
linear equations gives

a; = 10.5 x 100 b, = -7.5 x 103
a5 = 6 x 1013 by = -1.5 x 10T
&3 = 75 b3 = 5.11-2
If g/?Eo = 0.8
6 6

C = Eog/PEO = 9.9375 X 10” x 0.8 = 7.95 x 10

a = aafbe = -koo

B ={(ay - C)fo; = -3k

c® c

- -0.000163
bybob3la - B)  babs

2
blb2b3(m - B)

= -0.000173
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Therefore equation {17) becomes

t
E
C»/; X—(E:C—)dt (1, + B)o.ooo_173(T . m)0'000163 j lT ) hoo|0'000163

e = -
(T, + OL)0.000163(T + p)0-000173 |o - 310 0-000173

since
(T, + B)0.000173 i |75 _ 3m|o.ow173 .

(T, + &)+ 000163 |5 - uoo|°'°°°163

Hence equation (16) is

v |T ) hoo|0'000163

Fy [1 - (c/e]| T - 3u0|0-000LT3

- 1) sin (mx/L) (22)

This relation is shown in figure 2 for the midpoint deflections of
the column. Also shown in figure 2 is a curve for a column subjected .to
the following conditions:

P/PEO = 0.9
and

T =75 + 0.542t

Of the two curves the steeper ome corresponds to a rapid heating
with a critical time of 48 seconds. The rate of heasting corresponding
to the flatter curve raises the temperature of the column in such a manner
that the Euler load i1s reached in 244 seconds. Comsequently, even the
slow heating is rapid enough from the viewpoint of practical spplications.

The diagram clearly indicates that indefinitely large deflections
develop at the time when the increase in tempersture lowers the Young's
modulus of the materisl to such an extent that the applied load hecomes
the Euler load of the column. At the more rapld rate of heating presented
the ¢ritical time cesn be considered in good spproximation as the limit of
practical usefulness of the column. On the other hand with the slow rate
of heating the column becomes useless at & value of the time considerably
smaller than the critical time. The cumilative effect of creep results
in deflections of such megnitude that the linear stress-strein relation-
ship loses its validity; the material starts to yleld rspidly and the
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column buckles for all practical purposes before the theoretical critical
time, based on idealized conditions, is reached. If a maximum deflection
of the columm amounting to 50 times the initial maximum deflection is
considered inadmissible at the slow rate of heating, the column would
become useless after 200 seconds rather than at the critical time of

24l seconds.

DISCUSSION

The general displacement equation (eq. (16)) indicates that the
deflected column retains its sine-curve characteristic and that the addi-
tional deflection tends to Infinity in a finite time when the temperature-
dependent Euler load approaches the applied, constant end load.

Although the equation states that the infinite deflection is inde-
pendent of the viscosity coefficient, the time-dependent viscosity coef- -
ficient does, for practical purposes, influence the buckling failure if
buckling failure is defined by some finite ratio of additional deflection
to initial deflection. This can be seen from figure 2 which gives the
midpoint nondimensional additional deflections as a function of time for
the assumed linear relations. At the more rapid rate of heating the time
required for the temperature-dependent Euler load to attain the value of
the applied constant end load is 48.8 seconds. With the slow rate of
heating this critical time is 244 seconds. If 50 times the initial maxi-
mum deflection is considered as the 1imit of structural usefulness of the
column the lifetime of the column is 200 seconds and not the theoretical
critical time of 24k seconds.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., July 23, 1952.



16

NACA TN 3139

REFERENCES

Hoff, N. J.: Dynamic Criteria of Buckling. Research, Engineering
Structures Supp., Butterworths Scientific Publications (Iondon)
and Academic Press Inc. (New York), 1949, pp. 121-139. _

Jackson, L. R., Schwope, A. D., and Shober, F. R.: Information on
the Plastic Properties of Aircraft Materials and Plastic Stability
of Aircraft Structures at High Temperatures. RM-333, Project RAND,
Dec. 15, 1949. _

. Rosenthal, D., and Baer, H. W.: An Elementary Theory of Creep

Buckling of Colummns. Proc. First U. S. Nat. Cong. Appl. Mech. _
(June 1951, Chicago, I11.), A.S.M.E., 1952, pp. 603-611. .

Kempner, Joseph: Creep Bending and Buckling of Linearly Viscoelastic
Columns. NACA TN 3136, 1953.

Kempner, Joseph: Creep Bending and Buckling of Nonlinearly Visco-
elastic Columns. NACA TN 3137, 1953. ™ ' o I .

Freudenthal, Alfred: The Inelastic Behavior of Englneering Materials
and Structures. John Wiley & Sons, Inc., 1950. .

Kempner, Joseph, and Hoff, N. J.: Behavior of a Linear Viscoelastic
Column. Appendix II of "Structural Problems of Future Aircraft" = = |
by N. J. Hoff, Proc. Third Anglo-American Aero. Conf. (Brighton, .
Englend), R.A.S., 1951, p. 70.

Heldenfels, Richard R.: The Effect of Nonuniform Temperature Distri- )
butions on the Stresses and Distortions of Stiffened-Shell R
Structures. NACA TN 2240, 1950. ' )

Alfrey, Turner, Jr.: Mechanical Behavior of High Polymers. Vol. VI.
Interscience Publishers, Inc. (New York), 1948.



3F

NACA TN 3139

17

Figure 1.~ Deflection notation for column.
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